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The complete basis set (CBS) extrapolation model chemistry of Petersson and co-workers was used to explore
the potential energy surface of the ammonia inversion mode. The CBS-QCI theoretical energies were calculated
using 41 points along the inversion surface at the MP2/6-311++G** geometries. A variety of techniques
were explored to model the potential surface. Subsequent numerical solution of the one-dimensional
Schrödinger equation produced energy levels for ammonia isotopomers in good agreement with experimental
transitions. Accounting for the variable nature of the reduced mass with inversion coordinate is shown to be
of significance. This study is an important first step in producing reliable methods for making ab initio
thermodynamic corrections from∆E(0 K) to ∆G(298 K) in other nitrogen-containing systems. Because no
experimental methods generate data at 0 K, these corrections provide a crucial link between experimental
thermochemical energies and ab initio theory.

1. Introduction

The ν2 normal mode of ammonia1 has been extensively
studied and is a classic example of a symmetric double-
minimum potential energy surface (PES).2 It is of A1 symmetry
and is associated with the “umbrella type” nitrogen inversion
motion of the molecule depicted in Figure 1. Hereq is the
inversion coordinate described in degrees of pyramidalization
at nitrogen. Previous work by many groups has shown that
the vibrational anharmonicity of nitrogen inversion modes is
an important consideration when attempting to understand
spectroscopic data. In studies of ammonia isotopomers, Spirko
and Kraemer used the nonrigid invertor Hamiltonian method3

to fit experimental ro-vibrational transitions and obtain anhar-
monic potential functions and effective geometries for NH3.4

In related work, Wormer and co-workers (W-C) have compared
the ro-vibrationalν2 Raman spectrum of NH3 with an ab initio
calculated spectrum at the second-order Møller-Plesset (MP2)5
level of electron correlation.6 Calculations of ammonia inver-
sion energy levels directly from ab initio potentials include the
work of Wormer as well as that of Bunker, Kraemer, and Spirko
(BKS)7 and that of Campoy, Palma, and Sandoval (CPS).8

Each of these studies utilized methods requiring the derivation
and definition of a large number of equations specific to the
ammonia system. Analytical definitions show up in both the
kinetic and potential energy portions of the Schro¨dinger
equation. While these elegant methods take advantage of the
high symmetry of the NH3 molecule, it is difficult to apply the
same model to other examples of nitrogen inversion. It is our
goal to introduce a general method that can be used to calculate
inversion energy levels for many systems without extensive
modification of the method or of the computer software.
In this paper we apply the CBS-QCI/APNO ab initio model

chemistry of Petersson and co-workers9 to calculate the nitrogen
inversion potential energy surface of ammonia. The kinetic
energy terms including the reduced mass function for inversion
are calculated from the NH3 geometries along the inversion
coordinate. The one-dimensional, time-independent Schro¨dinger
equation is solved numerically to obtain wave functions and
energy levels. Differences between energy levels are then
compared to known NH3 experimental spectroscopic transitions.

The importance of nitrogen inversion potential anharmonicity
and variable reduced mass is assessed. The FORTRAN
programs written for this procedure can be applied to other
systems with only minimal alterations.

2. Theory

A. Thermodynamics. Our work on the ammonia molecule
was initiated by a problem we encountered during our studies
of solvent effects on amide rotational barriers. To compare
experimental values to ab initio theory, the calculated energies
must be corrected to obtain free energies at temperatures above
absolute zero. This requires that the partition function be
computed, which is generally separated into translational,
rotational, and vibrational components.10 The vibrational an-
harmonicity of the NR2 out of plane wag of amides and theν2
nitrogen inversion mode of ammonia complicate the calculation
of the vibrational partition function, yet make substantial
contributions to the entropy and free energy of the system.X Abstract published inAdVance ACS Abstracts,January 1, 1997.

Figure 1. Ammonia inversion potential energy surface showing the
umbrella motion.
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Vibrational anharmonicity can be taken into account by
excluding the anharmonic modes from the partition function
and calculating their thermodynamic contributions separately.
We make the assumption that all modes are uncoupled and
calculate the input of each to the enthalpy and entropy directly
from the vibrational energy levels using the formulas below.11

Hereεn are the vibrational energy levels referenced to the zero-
point energy.
As insufficient experimental data exist to obtain literature

values for many nitrogen inversion energy levels, a reasonable
alternative is to calculate these properties ab initio. Energy
levels for the ammonia inversion mode are solutions to the one-
dimensional, time-independent Schro¨dinger equation below.12

Here q is the inversion coordinate,µ is the reduced mass
appropriate forq, andV(q) is the inversion potential function.
The balance of this paper will focus on how ab initio theory
may be used to construct and solve this equation for the
ammonia molecule to an acceptable level of accuracy.
B. Inversion Coordinate. To define the inversion coordi-

nate, aZ matrix was constructed that forced an imaginary atom
to maintain equal angles between itself, nitrogen, and the three
hydrogens, as depicted in Figure 2. We chose to describe the
inversion coordinateq as the amount of pyramidalization
occurring at the nitrogen atom, where the value ofq is the
X-N-H angle minus 90°. This coordinate is adjustable
through a single variable, does not enforceC3V symmetry, and
is easily adaptable to non-C3V symmetric systems. By using
three equal angles as the criterion for placement of the imaginary
atom, this definition ofq is valid for systems with nonidentical
substituents on nitrogen and lower overall symmetry. It also
allows a full range of motion for the nitrogen substituents, while
permitting easy calculation of the ab initio potential function
for any values ofq.
C. Potential Function. The ammonia inversion potential

surface is a symmetric double well, which is highly anharmonic.
An energy barrier to the planar transition state of about 2000
cm-1 separates two identical pyramidal minima. This causes a
characteristic splitting of the vibrational energy levels into pairs
described by symmetric and antisymmetric wave functions. The
spacing of these levels is dependent on many parameters of the
system including both the height and shape of the central
barrier.2

Previous investigations have looked at the ammonia energy
surface by assuming a functional form for the inversion
potential, solving the inverse eigenvalue problem, and fitting
to the experimentally observed spectroscopic transitions.3,4

Ammonia has been especially difficult in that the assumption
of the functional form of the potential clearly affects the barrier
height and in that the fits to the transitions provide parameters
that are seldom unique. The data so obtained may or may not
be a “true” representation of the potential energy surface.13

Alternatively, ab initio calculation of the inversion potential
and subsequent solution of the Schro¨dinger equation has the
advantage of not assuming a priori any functional form for the
PES. Once points along the surface have been calculated, they
may be fit to a variety of analytical functions or various
interpolation methods may be used to fill in the voids. One
goal of this study is to determine the best way to handle
representing the potential surface in the Schro¨dinger equation.
Another goal is to elucidate the levels of ab initio theory
necessary to calculate an inversion surface that can be used to
reproduce the experimental transitions of ammonia. Our
capacity to reproduce the experimental spectroscopic transitions
then becomes a function of our ability to solve the eigenvalue
problem and the level of theory with which we can afford to
compute the surface.

D. Reduced Mass.The inclusion of a reduced mass (kinetic
energy) term in the Schro¨dinger equation necessitated the
selection of a method for its rapid calculation. The lowest
energy pathway for ammonia inversion maintainsC3V symmetry,
but does not keep the N-H bond lengths constant. The
derivation of a simple reduced mass expression for this case
would be extremely difficult, as the reduced mass actually varies
throughout the inversion motion in a path-dependent manner.
To be rigorously correct, the reduced mass function that we
determine must be the one corresponding to the inversion
coordinateq that we have selected. Another consideration in
the choice of a method was to ensure that it would be easily
adaptable to molecular species without the high symmetry of
NH3.

For the reasons above, we decided to calculate reduced mass
using a numerical method. Previously, Laane and co-workers
have used a vectorial method to analyze vibrational kinetic
energy terms as a function of coordinate.14 We used identical
formulas for the matrix elements, but substituted our ab initio
geometries for those determined by vectorial description of the
vibrational motion. Durig, using a similar technique, has
demonstrated that reduced mass functions calculated from
relaxed ab initio geometries can be significantly different from
those determined using semirigid vibrational models.15

With the fully relaxed atomic positions known as a function
of the coordinate, the vibrational-rotationalG matrix may be
determined using equations taken from Laane.16

Here,I is the 3× 3 rotational moment of inertia tensor,X is a
3 × (3N-6) matrix containing information on vibrational-
rotational coupling, andY is a (3N-6) × (3N-6) matrix
representing the vibrational contribution. Looking at the
inversion vibration alone assumes decoupling from all other
vibrational modes and produces the 4× 4 matrix below
designatedG(q).

Figure 2. Ammonia inversion coordinate.
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While this paper will deal with only a single vibration, it should
be noted that this method is a general one. Additional vibrations
may be treated by the expansion of the matrix by one row and
column per new vibrational coordinate. The matrix elements
are defined below wherei is thex, y, or z fixed molecular axes,
N is the total number of atoms,mR is the mass of atomR, rR is
the position vector of atomR relative to the center of mass,
andrRi andrRk are theith andkth components of theRth vector.

The matrix can be inverted using standard computer subroutines
to obtain a form that is of use to us.17

This matrix is symmetric about the diagonal. The top left 3
× 3 portion contains purely rotational terms, the upper right
and lower left three terms contain the rotational-vibrational
coupling, and the lower right corner contains the purely
vibrational contribution. For a given position along the
coordinate of our single inversion vibration, the reduced mass
is determined from theg44 term.

TheG(q) matrix and theg44 term are known to be coordinate
dependent for other large amplitude motions.15,18,19,20 We
expected this to be the case with ammonia inversion as well.
TheG(q) matrix must be calculated at many positions along
the inversion coordinate to enable the calculation of the reduced
mass as a function ofq.
This method was implemented by a series of FORTRAN

programs that were written to utilize the output from our
electronic structure calculations. The atomic positions in
Cartesian coordinates were translated to a center of mass
reference, and the molecule was rotated into the principal axis
system. Elements for theG(q) matrix were calculated using
the previously mentioned formulas. The partial derivatives were
approximated by taking differences in atomic position for small
incremental changes in coordinateq. Subtraction of two
ammonia species differing by 0.1° in q was found to be of a
good approximation to the derivatives, while retaining sufficient
accuracy in the Cartesian coordinates. The reduced mass was
mapped as a function of inversion coordinateq and then fit to
an eighth-order polynomial in even powers for insertion into

the Schro¨dinger equation. We chose to use an eighth-order
polynomial based on literature precedent for using it to model
the ammonia PES.8 While we found it sufficient for use in the
kinetic energy portion of the Hamiltonian, its shortcomings for
modeling the potential surface will be discussed in section 4.A.
E. Schro1dinger Equation. There are some complications

introduced into the mathematics of the Schro¨dinger equation
when the reduced mass is included as a function of coordinate.
Hougen, Bunker, and Johns (HBJ), in their paper describing
the “rigid bender” derivation for triatomics,21 build upon work
summarized by Wilson, Decius, and Cross (WDC)22 to solve
this problem. By looking simply at the large amplitude motion
(LAM) vibrational energy levels and assuming the rotational
energies in their ground states with quantum numbers,Jx ) Jy
) Jz ) 0, HBJ derive the zeroth-order rotational-LAM Hamil-
tonian below.

Here|G(q)| is the determinant theG(q) matrix, andµ(q) is the
reduced mass as a function of the inversion coordinateq. This
equation has been simplified by fixing all normal coordinates
at their equilibrium values and ignoring the vibrational angular
momenta. This effectively holds the small amplitude motions
at their equilibrium values while the LAM occurs.21

The linear derivative term in (12) may be removed using the
substitution

which has the effect of changing the volume element from dq
to µ(q) dq. This provides a Schro¨dinger equation of the form

where thef1(q) term is nearly constant for systems of greater
than three atoms.23 The Schro¨dinger equation has thus been
reduced to its familiar form for a one-dimensional potential,
which now includes the reduced mass as a function of LAM
coordinate. The wave functionφb must be transformed by eq
13 to give the original wave functionψb appropriate for the
energy level in question.
As before, the equations are expandable to include multiple

vibrational and rotational coordinate dimensions provided the
software is written to handle them.24-26 Complications can arise
from thef1(q) term due to a singularity for linear molecules at
q ) 0, wheref1(q) ) -∞. This difficulty was addressed by
HBJ, but is not problematic in our case, asf1(q) either is assumed
to be a constant or takes on finite values.
F. Numerov-Cooley Method. Solutions to the one-

dimensional Schro¨dinger equation (14) were obtained for the
vibrational energy levels using the Numerov-Cooley27,28 al-
gorithm implemented in a FORTRAN program.29 This numer-
ical method was developed to solve second-order differential
equations of the form
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By settingQ(q) ) (2µ/p2)[E - V(q)], this allows us to solve
the Schro¨dinger equation.
Our implementation utilizes the renormalized Numerov

method of Johnson.30 Combining this algorithm with the work
of HBJ, FORTRAN subroutines containing this code were
modified to accept the reduced mass as a function of coordinate
and transform the wave function back into its original form via
eq 13. Subroutines were written to facilitate the search,
acquisition, and storage of energy level and wave function data.
This was especially useful for cases of symmetric double-well
potentials, which can produce nearly degenerate energy levels.31

3. Ab Initio Calculations

A. CBS-QCI/APNO Model Chemistry. With the goal of
increasing computational performance while reducing cost,
Petersson and co-workers have developed the complete basis
set (CBS) family of model chemistries.32 Petersson’s highest
level method, the CBS-QCI/APNO (complete basis set-
quadratic configuration interaction/atomic pair natural orbital)
model chemistry,9 was used to study the inversion potential
energy surface of the ammonia molecule. Errors in energy
changes and bond dissociation energies using CBS-QCI/APNO
are often about half as large as those of Pople’s G2 model
chemistry.33 The method is currently limited to about three
heavy atoms, which makes it ideal for a high-level calculation
of the NH3 potential surface.
B. Preliminary Calculations. The ammonia molecule and

its planar inversion transition state were calculated at several
levels of ab initio theory, using the Gaussian program.34 The
results are shown in Table 1 for theC3V equilibrium structure
(EQ) and theD3h planar transition state (TS). Diffuse functions
are known to be of importance for a good description of lone
pair electrons.35 We expect that they will be especially
important in the case of ammonia, where the energy along the
inversion coordinate is intimately related to the hybridization
of the nitrogen lone pair. Indeed, the addition of a diffuse
function on nitrogen at the MP2 level drastically lowers the
inversion barrier. In general, it appears that additional diffuse
and polarization functions decrease the inversion barrier, while
changing the basis set from double to tripleú or improving the
electron correlation treatment increases the barrier.36 The better
levels of theory agree on an inversion barrier just under 2000
cm-1 and a shortening of bond lengths of around-0.015 Å in
the planar transition state. The 125 cm-1 barrier change between
the APNO and CBSB5 basis sets is remarkable given the already
very sophisticated model at the CBS-QCI/APNO level. This
illustrates how difficult it can be to model a “simple” lone pair
that undergoes a change in hybridization.
C. MP2/6-311++G** Geometries. For our CBS-QCI

calculations along the inversion coordinate we utilized MP2/
6-311++G** gradient-optimized geometries. This theory level
gives better agreement with ammonia experimental ground state
geometry than the QCISD/6-311G** geometry normally used
for the CBS-QCI/APNO model chemistry.37 The 1.0127 Å

calculated N-H bond length is very close to the vibrationally
averaged bond length determined experimentally at 1.0124 Å.38

The equilibrium inversion angle atqEQ ) 21.49° is also close
to the experimental value atqEQ ) 22.15°. For these reasons,
it is also the basis set which Petersson and co-workers have
chosen for their CBS-QCI calculations of N-H bond containing
species.37 Mapping the ammonia PES was done at 5° intervals
from q ) 0 to (60°. This was supplemented by points at 1°
intervals fromq) 0 to(35° for what will hereafter be referred
to as “enhanced” PES calculations. This high density of points
was necessary in order to assess the minimum numbers of points
needed to accurately interpolate the entire surface. Geometry
optimizations in all other degrees of freedom were carried out
using tight convergence (maximum force less than 1.5× 10-4

hartrees/(bohr or radian)). The MP2/6-31++G** optimized
geometries every 5° are listed in Table 2.
D. Potential Energy Surfaces. Calculations along the

inversion potential surface were undertaken with several dif-
ferent levels of ab initio theory, including geometry optimization
for all but the CBS-QCI energies. The results for each 5° of q
are listed in Table 3 with additional points included in Table
S.I of the Supporting Information. Figure 3 illustrates the
double-well character of the PES at the MP2/6-31++G** level.
At all levels of theory the NH3molecule maintainsC3V symmetry
along the minimum energy pathway. This agrees with experi-

TABLE 1: Ammonia Theory Level Dependence (Bond Lengths in Angstroms,q in Degrees, Energy in Hartrees, and∆E in
cm-1)

theory level qEQ rNHEQ rNHTS EEQ ETS ∆E

HF/6-31G* 21.68 1.002 54 0.988 43 -56.184 36 -56.173 99 2276
MP2/6-31G* 22.42 1.016 74 0.999 51 -56.357 38 -56.346 93 2294
MP2/6-31+G* 20.98 1.016 75 1.002 70 -56.366 44 -56.358 64 1751
MP2/6-311++G** 21.49 1.012 73 0.998 18 -56.434 68 -56.426 78 1734
CISD/6-311++G** 21.61 1.011 65 0.996 55 -56.419 76 -56.411 34 1848
CBS-QCI/APNO -56.559 78 -56.551 57 1802
CBS-QCI/CBSB5 -56.584 45 -56.575 67 1927
lit. ref 38 22.15 1.012 24

TABLE 2: Ammonia Geometries along Inversion
Coordinate q at the MP2/6-311++G** Level of Theory
(Bond Lengths in Angstroms,q in Degrees)

q rNH q rNH

0 0.998 180 35 1.034 393
5 0.999 026 40 1.046 068
10 1.001 521 45 1.062 328
15 1.005 533 50 1.085 006
20 1.010 893 55 1.118 018
25 1.017 452 60 1.168 398
30 1.025 284

TABLE 3: Calculated Energies at Points along the NH3
Inversion Potential Energy Surface in Hartrees withq in
Degreesa

MP2 CBS-QCI

q 6-31G* 6-31G* 6-311++G** APNO CBSB5

0 -56.173 99 -56.346 93 -56.426 78 -56.551 57 -56.575 67
5 -56.175 13 -56.348 00 -56.427 66 -56.552 44 -56.576 60
10 -56.178 13 -56.350 84 -56.429 95 -56.554 73 -56.579 00
15 -56.181 73 -56.354 36 -56.432 72 -56.557 55 -56.851 95
20 -56.184 15 -56.356 98 -56.434 55 -56.559 56 -56.584 13
25 -56.183 41 -56.356 85 -56.433 84 -56.559 25 -56.584 09
30 -56.177 52 -56.352 13 -56.429 04 -56.555 13 -56.580 44
35 -56.164 64 -56.341 11 -56.419 36 -56.545 81 -56.571 83
40 -56.143 06 -56.322 25 -56.404 40 -56.529 91 -56.556 29
45 -56.111 14 -56.294 23 -56.381 77 -56.505 92 -56.532 06
50 -56.067 27 -56.255 95 -56.348 89 -56.472 26 -56.498 09
55 -56.010 14 -56.206 38 -56.303 91 -56.427 15 -56.452 84
60 -55.939 67 -56.144 12 -56.244 60 -56.368 82 -56.394 53

aCBS-QCI calculations utilized the MP2/6-311++G** optimized
geometries.

3146 J. Phys. Chem. A, Vol. 101, No. 17, 1997 Rush and Wiberg



mental observations of A1 to A1 vibrational transitions in the
Raman experiments of W-C.6

Of the two highest level calculations, the first was a QCISD-
(T)/6-311++G(2df,p) calculation subsequently corrected by the
CBSmethod of Petersson and co-workers to yield what is known
in the literature as the CBS-QCI/APNO energy (without the
zero-point correction). The ZPE term included in the CBS-
QCI/APNO method was omitted because we calculated the NH3

inversion potential energy surface at positions away from
stationary points. Due to the small size of ammonia, we were
able to compute additional energies using the (14s9p4d2f,
6s3p1d)/[6s6p3d2f,4s2p1d] APNO basis set (hereafter known
as CBSB5), which was used by Petersson and co-workers in
the original formulation of CBS-QCI/APNO.9a It is hoped that
the diffuse functions in the extended basis set will help to
correctly describe the lone pair throughout the inversion
coordinate. The combination of the CBS correction with an
additional QCISD(T)/CBSB5 calculation represents our highest
level of ab initio theory.
E. Reduced Massµ(q). Preliminary calculations indicated

that the reduced mass is much more sensitive to N-H bond
length changes than to angle changes. It is hoped that the MP2/
6-311++G** theory level, which gives good bond lengths at
the equilibrium geometry, will continue to be accurate at other
locations on the potential surface. Calculated values ofµ(q) at
5° intervals along the potential surface for six isotopomers of
ammonia are given in Tables S.II, S.III, and S.IV of the
Supporting Information with Figure 4 graphing the results for
14NH3, 14ND3, and 14NT3. In all cases, the reduced mass
function is a smooth curve that increases in magnitude with
distortion from planarity. It doesnothave the double-well shape
characteristic of the ammonia PES. As expected, heavier
isotopes produce increased masses, with substitution for the
hydrogens being more pronounced than changing from14N to
15N. Substitution ofµ(q) into the Schro¨dinger equation was
facilitated by modeling the reduced mass as an eighth-order
polynomial in even powers. The coefficients were determined
by fitting to the data fromq ) 0 to 60° using the Levenberg-
Marquardt algorithm39 and are listed in Table 4.
d. Kinetic Energy Term f1(q). The other kinetic energy

term necessary to solve the Schro¨dinger equation is that known
as f1(q) from the HBJ derivation described earlier. It is a
function of inversion coordinate and, like the reduced mass,
can be calculated directly from the atomic masses and the
geometries along the coordinate via eq 15. The second
derivative term was determined by differentiation of an eighth-
order polynomial that had also been fit with the Levenberg-

Marquardt algorithm to|G(q)|-1/4µ(q)-1/2 at each point. Values
of |G(q)| andf1(q) are shown in Tables S.II, S.III, and S.IV of
the Supporting Information. Thef1(q) values, which were
calculated at 5° intervals, were subsequently fit to another
eighth-order polynomial in even powers for substitution into
the Schro¨dinger equation. The coefficients determined for each
of the ammonia isotopomers are listed in Table 5, with Figure
5 graphing the results for14NH3, 14ND3, and14NT3.
In contrast to the reduced mass, thef1(q) functiondoeshave

a double-well character for all isotopes examined. The minima
of the double well, it should be pointed out, are unrelated to
where the minima of the potential energy curve are located.
The PES for each species is the same, but the kinetic energy
terms have different shapes and characteristic minima. The
magnitude off1(q) is quite modest in all cases, although it
increases with heavy isotope substitution. This agrees with
previous work showing that thef1(q) term is small for molecules
with more than three atoms.23

4. Inversion Energy Level Calculations

A. Method. Our FORTRAN program provided numerical
solutions to the Schro¨dinger equation via the Numerov-Cooley
method when given input for the reduced mass function, the
f1(q) function, and the PES as equation coefficients or data
points. Numerically, the integrations were found to converge
to (0.001 cm-1 using 2001 points on the inversion coordinate
with boundaries set atq ) (70°. A cubic spline PES
interpolation was set to keep d2V/dq2 ) 0 at the end points
(natural spline). Calculations of 11 energy levels were complete
in under 30 s on a DEC2000 workstation.

Figure 3. Calculated energies along the ammonia inversion coordinate.

Figure 4. Calculated reduced mass of the ammonia isotopomers along
the inversion coordinate.

TABLE 4: Coefficients for µ(q) ) µ0 + µ1q2 + µ3q6 + µ4q8,
Where µ Is the Reduced Mass inme bohr2/deg2a

molecule µ0 µ1 µ2 µ3 µ4

14NH3 4.910 6.669E-4b -7.937E-8 2.089E-11 3.348e-15
15NH3 4.968 6.522E-4 -7.827E-8 2.090E-11 3.347E-15
14ND3 8.334 1.684E-3 -1.578E-7 3.015E-11 8.116E-15
15ND3 8.505 1.640E-3 -1.541E-7 3.011E-11 8.116E-15
14NT3 10.853 2.904E-3 -2.301E-7 3.038E-11 1.396E-14
15NT3 11.145 2.831E-3 -2.259E-7 3.126E-11 1.383E-14
aDetermined from MP2/6-311++G** optimized geometries using

least squares fits to 1/g44 values at 5° intervals along a(60° range of
q. bRead as 6.669× 10-4.
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The energy levels are more sensitive to the PES than to the
kinetic terms, so we tested various models for their ability to
correctly mimic the ab initio ammonia PES. Our results showed
the cubic spline interpolation superior to polynomial fits and
polynomial interpolation, demonstrating the best propensity to
converge with increasing ab initio point density. For all our
spline test cases, the difference between points each 5° and each
1° of q was less than 1% in the barrier and 0.2% in energy
levels below 5000 cm-1. Polynomial fits are unable to mimic
the ammonia PES with sufficient accuracy, even through orders
as high as 16th. Although commonly used,7,8,40,41the fourth,
sixth, and eighth orders underestimate the potential barrier by
445, 220, and 55 cm-1, respectively. We should like to caution
against using such low order polynomials for modeling anhar-
monic potential surfaces.
B. Effect of Potential Surfaces. Table 6 contains the first

11 calculated NH3 inversional energy levels using increasingly
sophisticated ab initio theory to calculate points each 5° of q
and utilizing bothµ(q) andf1(q) at the MP2/6-311++G** level.
An example of the output can be seen in Figure 6, which shows
the first three pairs of energy levels and their wave functions
for ammonia at the CBS-QCI/CBSB5 theory level. One can
easily see the tunnel splitting caused by the potential barrier
and that the symmetric wave functions are always the lower of
the pair in energy.
One of the ways to decrease the expense of calculating

potential energy surfaces is to use nonoptimized geometries.42

The changes in the energy levels caused by holding the N-H
bond length constant throughout the inversion at the equilibrium
or transition state geometry value can be substantial. Errors
over 5% are not uncommon, with some of the low levels moving
nearly 100 cm-1, as documented in Table S.V of the Supporting

Information. Thus one should be cautious before utilizing this
cost saving approximation.
With the HF/6-31G* PES, the energy levels are calculated

about 10% too high in comparison with experiment. The tunnel
splittings into symmetric and antisymmetric levels are also a
bit too large. The introduction of electron correlation at the
MP2 level increases the barrier slightly, which acts to reduce
the tunnel splitting. This works in conjunction with the greater
effect of correlation decreasing the energetic cost of distortions
far from the equilibrium geometry, widening the potential well
and lowering all the energy levels.
As one would hope, better ab initio treatments continue to

decrease deviation from experiment. The last two columns in
Table 6 show the highest levels of theory used. At the CBS-
QCI/APNO level the splittings are still a bit too large, but
notably, the small CBS correction moves them in the right
direction. The CBS modification makes less than a 5 cm-1

change in the barrier. Significant improvement is made with
the increased basis set of the CBS-QCI/CBSB5 theory level,
although it is curious that both the CBSB5 and APNO levels

TABLE 5: Coefficients for f1(q) ) a + bq2 + cq4 + dq6 + eq8, Where f1 Is the Additional Hamiltonian Kinetic Energy Term
Expressed in Hartreesa

molecule a b c d e
14NH3 7.886E-5b -3.403E-7 1.645E-10 -1.999E-14 2.224E-19
15NH3 8.702E-5 -3.516E-7 1.690E-10 -2.092E-14 3.055E-19
14ND3 -2.934E-5 -1.917E-7 1.092E-10 -9.678E-15 -6.011E-19
15ND3 -1.627E-5 -2.097E-7 1.155E-10 -1.069E-14 -5.370E-19
14NT3 -1.173E-4 -6.663E-6 6.587E-11 -3.395E-15 -8.229E-19
15NT3 -1.009E-4 -9.050E-8 7.400E-11 -4.382E-15 -8.333E-19

aDetermined from MP2/6-311++G** optimized geometries using least squares fit tof1 values at 5° intervals along a(60° range ofq. bRead
as 7.886× 10-5.

Figure 5. Calculatedf1(q) kinetic energy terms for ammonia isoto-
pomers along the inversion coordinate.

TABLE 6: Values of the Inversional Energy Levels of
Ammonia Calculated from the PES at Various Levels of ab
Initio Theory in cm -1; Functions for µ(q) and f1(q)
Calculated at the MP2/6-311++G** Level

MP2 CBS-QCI

level lit.
HF

6-31G* 6-31G* 6-311++G** APNO CBSB5

ZPE 575.63 560.54 506.69 501.67 501.71
0+ 0.00 0.00 0.00 0.00 0.00 0.00
0- 0.79 0.79 0.55 2.19 1.50 0.99
1+ 932.43 1044.94 1025.84 874.96 885.47 905.65
1- 968.12 1082.04 1053.55 951.79 943.94 946.95
2+ 1598.47 1792.16 1767.22 1507.70 1515.43 1554.33
2- 1882.18 2102.73 2036.41 1885.33 1858.83 1852.77
3+ 2384.17 2664.06 2575.16 2405.17 2367.51 2353.86
3- 2895.61 3235.18 3111.73 2955.61 2903.36 2869.28
4+ 3448 3870.29 3714.91 3549.37 3488.46 3440.03
4- 4045 4546.08 4357.21 4175.60 4109.02 4046.79
5+ 5259.84 5036.62 4830.65 4762.52 4688.24

Figure 6. Calculated ammonia inversion energy levels and wave
functions.
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give quite good energy levels despite their seeming disparity
in calculated barrier heights. Difficulties notwithstanding, our
highest level of theory at CBS-QCI/CBSB5 does a very good
job at predicting the experimentally observed spectroscopic
transitions for NH3. Of significance is the fact that this
procedure does not require fits to the observed energy levels,
as all the necessary quantities are calculated from first principles.
C. Comparison with Experiment. For further comparison

with experiment, CBS-QCI calculations each 1° of q were run
and the resulting enhanced PES data subjected to the previous
treatment. The resulting energy levels for six ammonia isoto-
pomers are listed beside the experimental values in Table 7.
Overall, the agreement is remarkably good, with the spacing
between levels often significantly more accurate than the
absolute energies.
There is a consistent underestimation of the energy levels

relative to the ZPE. In14NH3 and 15NH3 this reaches a
maximum of 45 cm-1 at the 2+ level and then declines again.
In 14ND3 it does not seem to have reached the apex by the 4-
level. This would seem to suggest that the potential is a bit
too wide, especially around the top of the inversion barrier.
Relative splittings of the symmetric and antisymmetric levels
are slightly too large in most cases except14NT3. Again, where
there are enough experimental levels to detect it, the trend seems
to be a maximum overestimation near the top of the potential
barrier. This would seem to be in the opposite direction from
the effect expected from a potential that is too wide, but serves
to illustrate that a variety of factors, including a complicated
shape dependence on the PES and overall barrier height, are at
play. These factors are also at work in the spacings between
levels of identical parity, which are underestimated, but show
a trend toward overestimation at higher levels.
D. Effect of Reduced Mass.After having established our

best level of theory, it is of interest to investigate the effect of
changes in the kinetic terms of the Schro¨dinger equation on
the calculated inversion energy levels. Holding reduced mass
constant at either the equilibrium or transition state value has a
larger effect than calculating the reduced mass function at a
lower level of theory. For14NH3, fixing µ(q) at the planar
geometry increases the energy of the 1+ level by 20 cm-1 and
the 5+ level by 180 cm-1, while complete functions calculated
at a lower theory level changed the 5+ level by only 5 cm-1.
Fixing µ(q) at the equilibrium value causes a maximum decrease
of about 14 cm-1 in the energy levels below 5+. This rather
small effect is caused by a favorable bias in the ammonia
system. Because the shape of theµ(q) function is parabolic,
while the PES has a double-well shape, the equilibrium value
of the reduced mass is a crude average of the values assumed
by µ(q) in a typical inversion motion. In systems like amides,
the minimum of the PES coincides with the minimum of the

reduced mass function. Using the equilibrium value in such a
case would not gain this special benefit of the ammonia system.
Data from modification of the reduced mass function are
included in Table S.VI of the Supporting Information.
E. Effect of Kinetic f1(q) Term. The supplementary Table

S.VII includes a recalculation of Table 7, where thef1(q) term
has been set equal to zero. The largest change is in the zero-
point energy, which decreases for all isotopes. However, the
maximum effect is just over 1 cm-1 in ZPE and far less for
most of the energy level differences. Thus the assumption
which can be made to ignore thef1(q) term is a valid one for
ammonia and its isotopomers. We choose to leave it in most
of our calculations because it was easily obtained during our
calculation of the reduced mass.
F. Comparison with Previous Studies.Ammonia and its

isotopomers have been the subject of numerous computational
and experimental studies. Of particular relevance to us is work
of Spirko and Kraemer, who used an ab initio CISD
(13s8p4d,9s3p)/[8s5p3d,6s2p] calculated PES to supplement the
input for their nonrigid invertor Hamiltonian method.4 By using
the ab initio potential as a model to adjust their parameters,
they fit to the experimental spectroscopic transitions and
achieved very close agreement with the observed energy levels.
Their best fit indicated a potential barrier of 1884 cm-1, although
other fits varied this number by over 90 cm-1. Ab initio theory
was used to assist in the fitting of experimental data, and the
study stopped short of having the calculations stand alone.
Table 8 shows our results for the first six14NH3 energy levels

using our highest levels of theory alongside subsequent columns
containing previously published work from other groups and
the experimental transition energies. In all these studies the
energy levels were calculated directly from ab initio potentials
without fits to spectroscopic transitions, although it should be
noted that agreement with experiment was never the primary
goal of the work.

TABLE 7: Calculated Inversional Energy Levels for Ammonia Isotopomers Compared with Experiment in cm-1;a Values
Determined with the Enhanced CBS-QCI/CBSB5 PES Utilizingµ(q) and f1(q) at the MP2/6-311++G** Level

level 14NH3 lit. 15NH3 lit. 14ND3 lit. 15ND3 lit. 14NT3 lit. 15NT3

ZPE 498.11 495.84 379.26 376.48 328.43 325.15
0+ 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
0- 0.99 0.79 0.94 0.76 0.06 0.05 0.05 0.05 0.01 0.01 0.01
1+ 905.50 932.43 902.45 928.46 726.15 745.60 720.95 739.53 637.12 656.37 631.00
1- 946.84 968.12 942.24 962.89 729.86 749.15 724.33 742.78 637.88 657.19 631.65
2+ 1553.20 1598.47 1548.10 1591.19 1327.58 1359.0 1321.01 1205.73 1196.25
2- 1852.91 1882.18 1842.46 1870.86 1399.37 1429.0 1388.41 1226.66 1214.93
3+ 2353.99 2384.17 2340.04 2369.32 1790.35 1830.0 1778.47 1625.86 1615.56
3- 2869.27 2895.61 2850.76 2876.13 2067.56 2106.6 2048.55 1782.25 1763.29
4+ 3439.37 3448 3416.46 2437.30 2482.0 2413.56 2087.05 2064.33
4- 4046.53 4045 4019.06 2825.38 2876.0 2796.10 2382.78 2353.27
5+ 4687.78 4655.65 3243.06 3208.37 2714.21 2678.94

a Literature data from ref 3 with none available for15NT3.

TABLE 8: Comparison of Ammonia Inversion Vibrational
Energy Levels Calculated from ab Initio Potentials in cm-1

this worka W-C MP2b W-C SCFb CPSc BKSd lit.e

0+ 0.00 0.0 0.0 0.00 0.00 0.00
0- 0.99 0.5 1.3 1.00 1.02 0.79
1+ 905.50 1031.2 1023.0 924.12 986.7 932.43
1- 946.84 1071.4 1099.1 981.04 1032.3 968.12
2+ 1553.20 1627.4 1661.1 1559.57 1682.0 1598.47
2- 1852.91 1974.9 2086.8 1931.34 2011.6 1882.18
3+ 2353.99 2473.40 2384.17
3- 2869.27 3065.91 2895.61

aOur highest CBS-QCI/CBSB5 theory level.bWormer and co-
workers, ref 6.cCampoy, Palma, and Sandoval, ref 8.d Bunker,
Kraemer, and Spirko, ref 7.eReference 3.
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Bunker, Kraemer, and Spirko (BKS) used CISD calculations
with a (11s7p1d,6s1p)/[5s4p1d,3s1p] basis set, fit them to an
analytical potential function, and calculated inversional energy
levels that were between 5 and 10% too high.7 This study was
concerned with assessing the ability of their analytical function,
which they were using in the nonrigid invertor Hamiltonian
work, to model the PES of ammonia. Although their work
represents the best of the previous computational studies, their
potential function was based on an eighth-order polynomial,
which we have shown to be a possible source of significant
errors. While the theory level of their ab initio calculations
was quite good, it seems doubtful that they were able to reach
a solid convergence of the energy levels.
Later, Campoy, Palma, and Sandoval (CPS) utilized a

numerical method to calculate the energy levels using points
from the published potential of BKS.8 The goal was the
development of a mathematical method for solving the Schro¨-
dinger equation for very anharmonic potential surfaces.43 Again,
an eighth-order polynomial was used in the PES model.
Additionally, the CPS work utilized a constant reduced mass,
which is a poor assumption, as previously discussed. The
fortuitous agreement with experiment took advantage of the fact
that the reduced mass at the equilibrium geometry happens to
be an approximate average of its value over the course of the
motion. At best, the CPS results should have been no better
than those of BKS, whose literature potential they used.
In a more recent study, Wormer and co-workers (W-C)

carried out MP2 calculations with a (12s8p3d1f,7s2p1d)/
[10s7p3d1f,6s2p1d] basis set.6 Here, the fairly low level of the
correlation treatment might have adversely effected the PES,
although they also acknowledge problems in their fitting
procedures. The W-C predictions at the SCF level were too
high, as we also found using HF potentials. This was improved
somewhat by adding electron correlation at the MP2 level, but
clearly the lack of a high-level correlation treatment introduced
major errors.
In comparison with previous attempts at ab initio prediction

of ammonia inversion energy levels, our method performs
significantly better. While the others are in error by more than
100 cm-1 within the first six levels, our worst error is about 45
cm-1, with most well below that. This would appear to be due
to the improvements in the theory level at which we calculated
the PES and to the improved method developed to find the
energy levels with a high degree of precision.

5. Conclusions

The method we have developed for calculating the inversion
energy levels uses a minimum of assumptions and maintains
enough generality to be easily expanded to more complicated
systems. Our highest level of theory utilized a cubic spline
interpolation of a CBS-QCI/CBSB5 potential energy surface
mapped at 1° intervals below 35° of inversion and at 5° intervals
out to 60°. The kinetic energy terms for the reduced mass
µ(q) and f1(q) were determined from the MP2/6-311++G**
optimized geometries and were fit to eighth-order polynomials
in even powers for substitution into the Schro¨dinger equation.
The Numerov-Cooley integration technique was used to solve
for the wave functions, providing energy levels in excellent
agreement with experimental values for spectroscopic transition
of ammonia isotopomers.
The energy difference that appeared in the inversion barrier

by expanding to the CBSB5 basis set may indicate that
convergence has not yet been reached. This coupled with the
sensitivity of the energy levels to the potential energy surface
suggests that the largest source of error is the accuracy of the

ab initio PES. We find it doubtful that significant improvement
will come out of the kinetic terms of the Schro¨dinger equation.
This is heartening given that even better calcualtions of the PES
are readily available with the proper commitment of computa-
tional resources. Neglect of thef1(q) kinetic energy term was
found to have little effect on the energy levels, but shortcuts in
computing the reduced mass functionµ(q) and the PES were
shown to introduce significant errors.
Our method is easy to use and can be highly accurate. This

study represents a significant advance in our ability to calculate
spectroscopic transitions directly from ab initio data. Com-
parisons with previous calculations indicate superior perfor-
mance of this method in reproducing the first eight inversional
levels of ammonia. The calculations are of sufficient accuracy
that they should be useful in helping to assign new transitions
for the six ammonia isotopomers, including lines for15NT3,
whose inversion transitions have yet to be reported. A
modification of this method used to treat amide nitrogen
inversion showed utility in the calculation of molecular ther-
modynamic properties.44 The results were more robust and
accurate than those using conventional approaches and will be
addressed in a subsequent paper.
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